SELF-MODELING SOLUTIONS OF THE
HEAT-CONDUCTION EQUATION

V. N. Lagun ' UDC 517.951:536.2

Self-modeling solutions of the heat-conduction equation are described. The temperature
moment is assumed constant.

Many self-modeling solutions are known for the nonlinear planar heat-conduction equation. In [1],
golutions are constructed for boundary conditions in which the temperature or heat flow varies with some
power of the time. In [2], a solution is obtained which is based on the assumption that the temperature

moment Of xT(x, t)dx is independent of time.

The present work generalizes the solutions found in [1] and {2]. If is found that many solutions, in~-
cluding those well-known can be obtained under the condition of constant temperature moment.

We multiply both sides of the nonlinear heat-conduction equation .
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by tpkam and integrate with respect to x from x = 0 (the medium houndary) to x = x,(t), where x,(t) is the
thermal-wave front, at which the condition
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All terms are assumed finite.

We seek those solutions of Eq. (1) for which the right side of Eq. (3) is zero. The condition
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with M = const holds for these solutions. The parameters a from (1) and M from (4) are used to construct
self=modeling solutions. They have the form
1
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where
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A =2, 61=’7'—S+.1,
Ay=—(R+1), 8 =m-ts,

(7)
Ay=—R+1)—2p, S3=m+s—pn—s-L1,
A=2(m+s)+ &+ 1) (n—s-+1).
Substituting (5) and (6) in Eq. (1), we obtain for f(f) the ordinary differential equation
N 635 —1 g7 Ags
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Certain auxiliary relationships are required in what follows. Integrating (1) with respect to x, and
then (1) multiplied by x with respect to x, we obtain
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Substituting T(x, t) from (5) and (6) in the latter equation, we have
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0
where & is the value of the dimensionless parameter {6) at x = x, ().
Equation (8) can be written in the form
Y+ ST:E‘*“’ & =0, | (11)
Where W= A35/63o
Integrating (11), we obtain
A R 8,
e B 5 FE)d:=C.
0
The constant C is determined by setting £ = 0 and using (9):
f,;f: 3 f»fs AaS -+ 6 S fs (E) dt = 0. (]_2)
t
Including condition (2) at the front, we obtain the integral equation for
1 5 As 8 P F
S - 5
L= j e+ 2T f f* &) dds. (13)
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The value of §in (13) is unknown. The functions f(f) and § must satisfy the condition
EI
[reeea=1, a4
3 .

in addition to (13). This follows from (4), using (5) and (6).

Qualitatively different solutions of(13) and (14) are obtained, depending on the relationships between
the parameters sn,

s, n,mk p - (15)

Thus, for A;=0 we have solutions which satisfy the boundary condition T (X, t)x= 0=Ata. Here the boundary
heat flow is positive. It remains positive for (Ags+03)/A > 0. For A;s+6,=0 (zero heat flow at the bound~-
ary), the solution for f(¢) follows from (12):
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For ogs + 265 = 0, the solution satisfies the boundary condition T(x.t)x =4 = 0. It is obtained from {11)
without quadrature, in the form
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In the expressions (17) and (19), B(y, z) is the beta function.

The solutions (16) and (18) are generalizations of expressions derived in [1, 2]. They may also be ob-
tained directly from (13). The integral equation (13) is also satisfied by the functions f(§), corresponding to
negative boundary heat flow at nonzero temperature. This occurs for
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—
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Thus, a correspondence exists hetween the boundary conditions and the numerical values of the
parametfers {15). To obtain solutions of a given type, one must select the required parameter values.

Equation (13) can be solved numerically as follows. We divide the interval [0, ] into equal segments
by the points & > & > ..>&y_y > &N =0. If 5(£) is replaced by a straight line in each segment, we obtain the
following approximate equation after evaluating the integrals in (13):
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where q=1,2, ...,N; fq =f(£q), and f; = 0.

A value must be assigned to § for calculation purposes. The values of £{) and & must satisfy Eq. (14).
In conclusion, we note that Egs. (5), (13), and (14) do not have meaning for all values of the parameters (15).
Since the terms in (3) are bounded, it follows that if Ty =¢ = 0, then, using (18) we have
m

T @1

and if Ty -y >0,

E>1. (22)

Moreover, restrictions based on physical considerations are imposed on the parameters (15). The
condition for wave-front velocity damping is obtained from (6):

8
1>—A3—>0. (23)

The function f(¢) is positive for all values of the argument. We have,therefore, from (10)
26
% > 0. (24)

Since the thermal wave is propagated with finite veloeity,

n>0. ‘ (25)
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It is also obvious that

T

X

t

a and M
s,n,m,k, and p

s> 1.

NOTATION

is the temperature;

is the coordinate;

is the time;

are the dimensional parameters;
are the dimensionless parameters.
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